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Abs(raeL We study lhe information storage capacity of a simple perceptron in the 
error regime. For random unbiased patternsthe geometrical analysis gives a logarithmic 
dependence for the information content in the asymptotic limit. In this case, the 
statistical physics approach, when used at the simplest level of replica theorj, does not 
give satisfactory results. However for perceptrons with finite stability, the information 
content can be simply calculated with statistical physics methods in a region above the 
critical srorage level, for biased as well as lor unbiased patterns. 

1. Introduction 

In the study of the performance of formal neural networks as associative memory . 
devices, the recent interest in highly biased patterns has stressed the need for using 
information capacities, instead of pattern capacities, in order to characterize the 
performances of the network. For unbiased pattems the information capacity is 
identical to  the pattern capacity if the net makes no error. In the error regime, the 
information content is the relevant quantity that should be considered. The aim of 
this paper is to focus precisely on the information content of simple perceptrons in 
the error regime, for biased and unbiased random patterns. 

We will consider the simplest model of layered neural networks, the one-layer 
perceptron. This network has N input neurons, with activities denoted by the N- 
dimensional binary vector c, one output neuron, with binary activity u, and couplings 
coming from the input neurons (J). If some state E is presented to the network then 
the output will be 

U = sgn( J .  E -  0).  (1) 

This network performs a linear separation of the input space. In supervised learning 
one is asked to classify a given set of p patterns ({p” U”}, fi  = 1 , .  . . , p) into two 
classes. The stability of the pattern fi  is defined by 

If all the stabilities are positive all the patterns are learned hy the network, that is 
all the patterns are correctly classified. The values of the stabilities provide a quality 
test for the classification: the larger the stabilities, the better the classification. 
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A geometrical argument [l,  21 allows the derivation of the probability that a 
random dichotomy of a set of patterns will be learnable. In particular, in the large 
N limit the perceptron is able to learn any random classification of p = a N  random 
patterns up to a critical storage ratio a, = 2. Above criticality, the same argument 
can be extended to derive the minimal possible number of errors for a random 
dichotomy [3, 41. For these results to be valid, the only requirement on the patterns 
is that they should be in ‘general position’: any subset of N patterns should be 
llllcaI 1y 111ucpc11ue111. 

Unfortunately the geometrical approach cannot be easily generalized, in particu- 
lar, if one is interested in considering biased patterns or finite stability requirements. 
Within the framework of statistical physics, a completely different approach has been 
proposed by E Gardner [5,6]. The general idea is to work in the space of couplings, 
and to define an ‘energy’, a cost function. One can then compute a partition func- 
tion and look for the couplings which minimize this energy. If the cost function is 
the number of errors, one can obtain the maximal stomge capacity of a perceptron 
in many specific cases (real couplings for unbiased and biased patterns [5], discrete 
couplings [7, 81, etc). Above saturation one obtains the minimal possible number of 
errors [6, 91, and one can also consider other cost functions [lo]. In particular, each 
cost function can be associated with a particular algorithm, and the analytical calcu- 
lation gives the optimal and typical properties of the couplings that will be obtained 
by this-particular ‘algorithm. Sirong hifficulties remain: the techniques used, namely 
the ‘replica techniques’ derived from spin-glass theory [ll], in many cases become 
difficult to apply for large a, and, in particular, when the cost function is the number 
of errors. Hence some of the results already obtained are only approximations. 

In this paper, we reconsider these results and extend them, focusing on the 
information capacity of the network in the error regime. In the next section we 
introduce the relevant quantities. Then we illustrate these definitions in the particular 
case of Hebbian learning. Next we consider the maximal information capacity as 
derived from the geometrical argument. In the subsequent sections we turn to the 
statistical physics approach introduced by Gardner. The results are discussed in the 
last section. 

,:----I.. :..A---- _I^_. 

2. Information content of a dichotomy 

2.1. Classification of biased pallems 

We suppose the network has to classify a set E of p binary patterns. Among these 
p patterns p r  pattems have output i (T  = f l ) ;  p i  is the number of patterns with 
output T that the network classifies as U .  The fraction of errors in r-output patterns 
is thus 

The information stored in the network is in this case (see e.g. [12]) 

where Cp” is the binomial coefficient 

” _  P !  
cp - n ! ( n - p ) ! ’  
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The last two terms represent the loss in information content due to errors. In the 
large N limit we obtain for the information stored per synapse 

where s is the binary entrcpy fnnaio!! defiaed 2s 

S(z)= - z l n 2 ( z ) - ( 1 - z ) l n 2 ( 1 - z )  (7) 

and f' = p ' / p  is the probability of output T for an arbitrary pattern. When no 
errors are present the information content is 

(8) i = as(f+) -~~ 

In the case of standard coding (f+ = f -  = i) the errors for plus or minus output 
are equivalent and the information content per synapse reduces to 

i ( J , S )  = a(1 - S ( Z ) )  !9! 

where e is the fraction of errors. 

2.2. Generalization to finite stability 

We may also study the case of a neuron that only classifies patterns with a stability 
larger than some parameter IC (IC- > 0);  the neuron discards the patterns with small 
stability, to enhance the probability of good classification (such a perceptron is then 
similar to a perceptron with three-state output). In this case p;  patterns with 7 
output will not be classified (0 output) and the fractions of unclassified pattems is 

€; = p ; / p r .  (10) 

The information stored in the network is now 

and in the large N limit we obtain 

where we have defined the renormalized fractions of errors e: 

e: = C/( l  - e ; )  

(12) 

(13) 
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and ( T  = kl)  

B, = f r ( l . -€ ; ) ( l -€ : )+  f-r€-r (14) 

Bo = f‘.,‘. 
7 

Here E, 5 the fra&fi nf p8tterrA &&fie4 as T; upo :he fiachon of (jkca;de6 
patterns. In the case of standard coding the erron and the discarded patterns are 
equivalent for plus or minus outputs, and one obtains 

i ( J , ~ ) = a ( l - ~ o ) ( l - S ( ~ ~ ) ) .  (16) 

In the following sections we will consider the optimal information content that can 
be reached with such a percepuon, first using a geometrical method in the unbiased, 
K = 0 case, then using the techniques of statistical mechanics. In the next section 
we start with the study of a simple case, the Hebb learning rule, in order to illustrate 
the quantities introduced here. 

-. 2.1 . . - Fxample: ... . . . c l a ~ s ~ f i c d m  wi!h .H&h !~nmi.cg.n~!e 

Let us consider the simple Hebb rule for unbiased patterns, as used by Hopfield [13]. 
For a simple perceptron the rule reads (with the normalization J 2  = N) 

In this case it is particularly simple to derive the information content, because the 
distribution of stabilities is a Gaussian of width 1 and mean value 1/@. In the large 
N limit the fraction of errors is thus given by 

where 

m 

H(x)= D t  

and Dt is the Gaussian measure 

Dt = - exp(-:) d t .  Jz;; 

(18) 

The information content i_s a monotonically increasing function of the storage level; 
when a goes to infinity the information content per synapse tends toward a finite 
value (see also [12]): 

i, = l / r l n 2 .  (21) 
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For biased patterns, we assume by convention that the probability of minus output 
f -  is larger than its plus counterpart f+; we define mi as the input bias and the 
output bias is 

m, = 2 f- - 1. (22) 

In order to store a macroscopic number of patterns, a generalized Hehb rule must 
be used. Such a rule has been proposed in  [14, 151 and modified in [16]; the synaptic 
vector is 

where I is the vector I, = 1 for k = 1,.  . . , N and the last term subtracts from J 
the projection of the vectors ( u p  - m,)([" - miI ) /N  (for p = 1,. . . , p) on I 

The parameters U and c are to  be optimized in order to give the best performance. 
It can be shown [16] that the choice c = mi is optimal; in this case the probability 
distribution of the stabilities is still a Gaussian, but now it has width 1 - m: and its 
mean value depends on the output. For a pattern with output T the mean value is 
now 

where U is chosen to optimize the information content (for every bias and every 
storage level, one has 1 < U < 2). Note that the information content is independent 
of the input bias (for mi < 1); but this is only true for h' = 0. Note also that for 
every bias (and every value of U )  the asymptotic value of the  information content 
is the same; it is given by equation (21). However, as already shown in 1121, for 
large m (m, > 0.994) the information content is no longer a monotonic function 
of the storage level: in this case it goes through a maximum i,,, before reaching its 
asymptotic vaiue. -we nave 

lim i,,, = 1/21n2 
m.-1 (27) 

so it saturates Gardner's bound. 
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When the perceptron has finite stability for every output bias (m, < 1) the 
asymptotic information content is now 

where 

The value of the asymptotic information content per synapse is plotted on figure 1 as 
a function of K. It is interesting to note that its optimal asymptotic value is reached 
for I? - 0.6; thus, discarding the patterns with low local fields leads to a significant 
improvement in the information content. 

i 

i 

F_ipyre 1. Asymptole information conlent per synapse as a function of the parameler 
K- for Hebbian learning rule (for all output bias). 

3. Information capacity: geometrical argument 

The geometrical argument used in the 1960s [l] provides an estimate for the maximal 
capacity of a simple perceptron for patterns 'in general position'. In particular, in 
the large N limit, one gets the critical value i = a = 2 for storage without error. 
The argument can he used to derive the maximal capacity in the error regime, as 
shown by Venkatesh and Psaltis [3]. Their main result is that the maximal storage 
ratio (number of patterns per synapse) that can be obtained with at most a fraction 

errors defined by the unique solution of 
e 0: ejjajj &, f G i  large PJ, 2#,/(: - 2 E )  w:,*i* Kc & a fi;fi&ofi of :he f;aaio: 0: 

s (Z)  + S ( e )  = 1 
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where S is the binary entropy function, and they argue that IC, is a monotonically 
increasing and bounded function of E (see theorem 3.5 of [3]). This last assertion is, 
in fact, incorrect. In particular, for large a, IC, diverges like m. As shown 
by one of us [4], it turns out that the analysis, obtained from the very same argument, 
is more natural and simpler when the information content rather than the number 
of patterns is considered. Let us first give the result, and then the argument that 
supports it. 

The maximal information content in bits per synapse for a larger than two takes 
the simple expression: 

The fraction of errors at that value of a is given by the solution of 

Note that i is continuous at a = 2, increases with a and behaves like Inz(.r) for 
large a. Now let us derive formulae (31) and (32). We~start with the (well known) 
derivation of the capacity for no error. The probability W of success for the storage 
of p patterns is 

where A ( p , N )  is the number of regions delimited by the p constraints, and 2P is 
the total number of possible dichotomies. From geometrical counting one gets 

i = o iS( l / a ) .  (31) 

S ( l / a )  + S(E) = 1. (32) 

W = A ( p ,  N ) / 2 p  (33) 

min(p ,N)  

A ( P , N )  = c,” (34) 

A b ,  N )  = C,” (35) 

k=O 

where C,” is the binomial coefficient, C,” = p ! / k ! ( p -  k ) ! .  For large N and p larger 
than N ,  this number simplifies to 

and thus 
1 

N-a? N 
lim - l n , W = a  

The critical capacity a, is the point of change of asymptotic behaviour, which is here 
ac = 2. Now for a larger than 2, we consider the probability of success in storing any 
subset of patterns of size yN. The number of possible successes is now multiplied 
by the combinatorial factor 

One has the asymptotic behaviour 

and at criticality 

(39) 
s(-)  1 + s(’) - 1 = 0. 

a oi 

This is equation (32) for the fraction of errors E = 1 - y / a .  Now from (9) the 
information content per synapse is 

i = a [l- s(;)]  - 
which, combined with the preceding equation, leads to expression (31). 
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4. Statistical physics approach 

4.1. Oplimal information content: replica-symmeoic solution 

We now consider the statistical physics approach as introduced by Gardner [SI, and 
we use the formulation proposed in [lo]. In order to derive the optimal information 
content of a percepaon, we consider a cost function equal to the loss of information 
content due to errors or discarded pattems. This cost function E is defined on the 
N-dimensional space of couplings; if 4 is the loss of information content per synapse 
we have 

E ( J , 3 )  = N 4  (41) 

with 

4 = as(f+) - i ( J , Z ) .  (42) 

The minimum of this cost function (i.e. the 'ground-state energy') is thus obtained 
when the network has the optimal information content; this minimum is zero below 
the critical storage level and becomes positive above criticality, i.e. when the fraction 
rrf ~ n r r a  k~rrrmn. nr.&&m Th ralr . . l~tn +hie minimssm i i i~  A a + l n a  +ha nnrt;t;nn fiinr+;nn 
"1 Il.",., Y I W I I L I Y  p""LL".,' 1" M,.,",a,I ,.a- II..L....."L.. "I "I....I L.IV t,Y.L'L.".. L Y . . ~ L I " . I  

Z ( P , Z )  = /ddJ)exp( -OE(J ,E) )  (43) 

where dp(.7) is a normalized measure on the space of couplings. In this section we 
will only consider the case of spherical couplings, i.e. 

6 ( J 2  - N )  d.7 
ddJ) = J 6 ( J *  - N )  d J  (44) 

Then we proceed along the lines of [6]; as usual we expect the free energy to be 
self-averaging and thus the optimal information content is given with probability one 
by 

where we average over all possible sets of patterns E. This average is done using the 
I C p M  IIIs.LII"" atu LUG CalbUIaLI",, w prrm4w" 111 appcLt"1" cl I", 

biased ( k 2 )  patterns. The discussion on the stability of the replica-symmetric solution 
is given in appendix B. Let us now present the particular case of finite stability. 

4.2. Finite stabiliry, unbiased paltents 

Unfortunately for a percepuon with zero stability (1%- = 0) the replica-symmetric 
solution is not valid immediately above criticality [lo]. However when one adds 
a finite stability requirement there is a region above criticality where the replica- 
symmetric solution is still valid. This is due to the fact that the network can avoid 
making errors if it discards some fraction of patterns. In this section we will study 
this region for unbiased patterns. 

r--l:-n --.&-A IL- ,,mt-..L.:-- :" ..-acam+e,4 :- n...m-A:u A fn .,," h;nrpA {A I \  
Y l l Y l Y l C Y  (-A, "I." 
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For a stability parameter K ,  and for a given storage level a, e and eo, the typical 
fractions of errors and of unclassified patterns, are given by the saddle-point equations 
(71)-(72) (see appendix A). For every positive Ii  two different regions are observed 
when the storage level increases. In the first region, E = 0; the network increases the 
number of unclassified patterns in order to avoid erron in the classification and thus 
secure a better information content The information content is thus 

i = a(1- fo) (46) 
i.e. the number of classified patterns. eo is given by the saddle-point equation 

to = H (a- K) (47) 

where x is given by 

The Almeida-Thouless line of replica-symmetry breaking (see [ll]) is always located 
in this region; it is given in appendix B.l. When 21i  > 6 the equation for the 
line is very simple, being given by 

i,, = 1. (49) 
We have not found a simple physical reason for this result. The fraction of errors 
is thus always equal to zero in the replica-symmetric domain. In the second region 
where this quantity becomes finite the calculation is no longer valid. 

The curves showing i as a function of the storage capacity are presented for 
various Ii. in figure 2. The information content and its derivative are continuous 
at a, and furthermore in all the replica-symmetric domains these curves increase 
monotonously. Here, in contrast with the Hebbian case, the optimal information 
content is obtained for K = 0 in the replica-symmetric region. In figure 3 we show 
the AT line in the a - I C  plane. Note that the AT line differs from the Gardner-Derrida 
one, as the cost function used is different. 

4.3. Biased patterns 

The general formalism is easily generalized to the case of biased patterns, as shown 
in appendix A.2. For a given storage level a, the saddle-point equations are now 
(74)-(75). In these equations a new order parameter M ,  equal to the typical bias of 
the couplings, appears; this bias is positive for every mi > 0, and the saddle-point 
equation for M is given by (76). We first consider a zero input bias; above the critical 

except one, €0.  We have 
stornge !eve! G c ( K ) ,  "'e fisd 8 regiox (regbs !) -!?ere r!! frrctioss of errors 2re zerc 

(50) e; = H ( X -  - li) 
where X- is given by 

U J -CO 

Dt( Ii - t)' 

1 .  + ,-inf(-K,K-X-) 
Dt(1i-+ t)' 

J-m J 



Figure 2. Optimal information content per synapse 
for a perceptron with finite slabilily storing unbi- 
ased paltems as a function of the storage level, 
for different values of [he stability parameter K: 
full culves (from tap to bollom), h' = 0 , 0 . 5 , 1 , 2  
(replica-symmetric region); dolled CUNCS, Same val- 
ues of K, region where replica symmely is broken; 
chain CUN~, Almeida-Thoulw line; broken =UN.=, 

optimal information conlenl derived by the geomet- 
rical argumenl (section 3) for K = 0. 

F@re 3. 'Phase diagram' in the e-A' plane; lhe 
full curves are (from left 10 right) the critical curve 
where the fraction of  unclassified pallerns eo be- 
comes positive and the AT cume where replica Sym- 

m e l y  i s  broken. The dolled cutve represenls the 
AT curve when the cost function is the Gardner- 
Derrida one. 

In this case, the optimal strategy consists in discarding only patterns that have a 
specific output; the network discards some of the negative-output patterns. The 
information content is still 

i = QS(f+). (51)  

Therefore there is no loss in information content; indeed if a pattern is unclassified 
we know its output. This strategy is possible at a given storage level only if the 
following inequalities hold 

A. > u P K  (52) 

which is equivalent to X -  > 0. The equation X -  = 0 defines a new critical storage 
level a o ( K )  where the  loss in information content becomes positive; it is given by 

Above this storage level the network also starts discarding positiveautput patterns 
(region 11). Then we still have E* = 0 and now 

€; = H ( X 0  - 1;) (54) 
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where X -  = 0 and X +  is given by 

+ l Y - K , K - X + )  
Dt( lC+i) '  

and the optimal information content is no longer a linear function of the storage 
level; however it is still an increasing function. 

For positive input bias, we have to introduce the new stability parameters 

The meaning of these stability parameters will be clarified in the next section. In this 
case we obtain the same regions as in the mi = 0 case, however one has to replace 
li- by in the formulae giving E;. The value of h;I at eo( IC) Mo(m,, li) is 
independent of mi and we have 

Mo(mo,  I<)  = M,(m,,o)  - k.  (56) 

Thus this critical storage level ao( I < )  is, for every li, equal to 

a o ( r o  = a o ( o )  = a,(o). (57) 

The information content io(mi,K) at ao(l<) is thus independent of the stability 
parameter IC for mi > 0; for mi = 0 the stability parameter that optimizes io is, for 
any output bias m, 

Ii- = MO( m, , 0) . (58) 

Thus for any output bias and any mi > 0 we have 

(59) 
0 io(m,, mi,  li) = io(m,, mi, 0) = max (i,(m,,O, li)). 
K 

A geometrical interpretation of this formula is given in the next section. 
For mi = 0 the AT line crosses these two regions in the 01-K plane; the eqUati0nS 

for the line are given in appendix B. For patterns with input bias the situation is a 
bit different; for all output bias eAT is independent of li and mi and furthermorc 

As in the case of unbiased patterns we always have e* = 0 in the replica-symmetric 
region. 

In figure 4 we show for I< = 1 and mi = 0 the optimal information content as a 
function of the storage level for several values of the bias (m, = O,O.S,O.S). Note 
that even for patterns with unbiased output the information content can be increased 
if we allow unclassified patterns of only a specific output. This explains why the 
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7 " ' I " " ,  " ' 

/ 1 

Flgurc 4. Optimal information conlenl per synapse for a perceptron with h' = 1 storing 
biased patterns as a function of the storage level (here m; = 0,  from lhe highest slope 
at lhe origin lo  the lowest: m, = 0 , 0 . 5 , 0 . 8 ) :  full lines, (I < mAT; broken lines, 
(I > (IAT. 

results obtain in this section with m, = 0 differ from the last section, where we did 
not allow for different fractions of unclassified patterns for the two classes. 

Then we show regions I and I1 in a-IC plane for mi = 0 (figure 5(a)  (mi = 0 )  
and 5(b)  (mi = 0.5)) and mi > 0 (figure S(c ) )  for different values of the output 
bias, together with the regions where replica symmetry is unstable (a > aAT(K)) .  
In figure 6 we show the information content io at the critical storage level a,( I<)  as 
a function of the output bias, for different values of the stability parameter Ii. 

To end this section, note that the algorithm proposed in [SI to find couplings 
that satisfy the stability requirements A > IC for all patterns and all neurons in the 
network can be easily generalized to an algorithm that finds couplings with optimal 
information content in region 1. In this algorithm one picks a pattern (U, .$) at random 
and checks whether its stability is larger than IC. If not, the couplings are modified 
by the rule 

For biased patterns one now has to check whether the stability is larger than oI< 
and to apply the same rule. 

4.4. Geometrical interpretalion of lhe results 

In this section we will concentrate on equation (59) and show that it can be under- 
stood from a geometrical argument. Let J be the synaptic vector and I such that 
Ik = l / f i  for all k. From the definition of M and mi we can write 

J = M I  + J I  (62) 

where JL and .$pL for all p = 1,. . . , p are orthogonal to I and have been chosen 
such that they have the same norm as J and p, i.e. 0. Now let us define the 
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-0 

Figure 5. Critical lines in Ihe a-K plane: broken cuwes, a<(l<); full curves, ao(1i); 
dolled curves: OAT(K); (a) m; = 0, m, = 0; (b)  mi = 0. ma = 0.5;  (c) mi > 0 ,  
lines from left IO right, m, = n, n.s,n.a. 

stabilities in the orthogonal space A,' (for p = 1, . . . , p )  

According to the relations (62) and (63) we have 

Thus in the space 
distance M = 

separating the two classes is at a 

If for a given set of patterns there exists in the space orthogonal to I a hyperplane 
at distance 2 from the origin that separates the two classes, then the hyperplane 
parallel to thepreceding one at distance &'- k from the origin defines a perceptron 
with stability K that has no loss in information content (it makes no errors and only 
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m 

PIpm 6. Optimal information content at  the crit- 
ical storage level 010 as a function of the output 
bias: full cutve, mi = 0 ,  IC = 0,0.5,1,1.5; 
broken cuwe, mi > 0, all values of the stability 
parameter. 

Figure 7. Hyperplane separating the classes for 
1%. = 0 (full line); hyperplane defining the percep- 
tron when K is finite (broken line); and hyper- 
planes A L  = K" for o = + (dolled line). 

patterns of one class are unclassified). Figure 7 shows the different hyperplanes in a 
two-dimensional plane. 

For mi = 0 the hyperplane defined by the synaptic vector has to go through 
the origin (as we have M = 0 in this case); thus if the hyperplane separating the 
two classes, in the space OrthogOMl to I, is at distance M from the origin, then 
the hyperplane parallel to this one going through the origin defines a perceptron 
with stability fi that has no loss in information content. Thus the optimal stability 
parameter K is equal to fi, and relation (59) is obtained. 

5, one-step rep!ke-sp.me??y hrenking 

In this section we make a first step beyond the replica-symmetric approximation but 
we will see that further study is needed to obtain the exact solution. However the 
asymptotic behaviour shows some similarity with the geometrical analysis. 

In order to go beyond the AT line it is necessary to break the replica symmetry. 
The physical interpretation of this replica-symmetry breaking is the following (see 
Ill]): the space of couplings that minimize the cost function is no longer connex and 
is broken into different 'valleys'. The new order parameters characterizing the system 
are: q l ,  the typical overlap between two vectors belonging to the same valley; qo, the 
typical overlap for vectors belonging to different valleys; and m, a measure of thc 
number of valleys; if m = 1 infinitely many valleys are present; in the case m = 0 
only one valley exists and the ansatz reduces to the replica-symmetric ansatz. For 
binary synapses this ansatz is supposed to give the exact solution, at least in some 
region above the critical capacity [7]. Here we have only considered the simplest cost 
function (i.e. the number oferrors); this cost function gives us the optimal information 
content only in the unbiased, h' = 0 case. We will focus on this case in this section. 
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We define, as in the last section, the partition function 

where the 'energy' E is now the number of errors. Then the minimal fraction of 
errors is given, for a given storage level a, by 

where 

G is calculated in appendix C using a one-step replica-symmetly breaking ansatz 1111; 
however numerically we do not find any solution to the saddle-point equations other 
than the replica-symmetric one in the region just above the critical capacity. In the 
limit a + 00 we find analytically a one-step replica-symmetry breaking solution with 
q1 -+ 1, qo - 0 and m 3 0, and we obtain 

i a In, a (69) 

Hence we get the same logarithmic asymptotic dependence as the one suggested 
by the geometric argument but with a factor f instead of one (within the replica- 
symmetric approximation one finds i - a./-). 1 ,,. 

6. Conclusion 

In this paper we have obtained, in several cases, the optimal information content of 
a simple perceptron above the critical storage level. Many problems arise when one 
wants to derive this quantity; on one hand the geometrical analysis used in [I, 21 
and extended in the error regime by [3] may only be used for unbiased patterns and 
zero stability; on the other hand the framework of statistical physics introduced in [6] 
allows for a reliable computation of the optimal information content in some region 
above criticality only for perceptrons with finite stability. However this framework 
may he used fnr hlased patternsi and shows that in some cases a hieher information 
content can be obtained above criticality if one increases the bias, which is not true 
in the error-ftee regime. In all cases when the optimal information content can be 
calculated above criticality it is an increasing function of the storage level, with the 
exception of the Hebbian rule for sparse coded patterns [12]. Furthermore one can 
go beyond the assumption of replica symmetry to have a better approximation in the 
reEion - where this assumption gives unreliable results. This has been shown in the last 
section and compared with the exact result for unbiased patterns and zero stability. 

Several directions can be undertaken in this framework; first one may try to 
use more elaborate patterns of symmetry breaking 1111 in order to obtain the exact 
solution in the unbiased case; another possibility is to extend the calculation Of the 
last section to the cost function used in section 4. Indeed we could expect to have 
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an approximation of the exact solution in more general situations above the line of 
replica-symmetry breaking. 

Another interesting study is the one of perceptmns with discrete couplings; for 
binary synapses the one-step replica-symmetly breaking may be an exact solution at 
least in some region above criticality (71. As, in all cases studied in [8], the transition 
at criticality seems to be first order, this situation may be expected to remain true 
when one increases the synaptic depth; and the perceptmn with continuous couplings 
would be recovered in the limit where the synaptic depth goes to infinity. However the 
difficulty along this line of reasoning is that the one-step replica symmetry breaking 
does not yield satisfactory results in the continuous case, while it does in the binary 
one; one possible explanation is that the limits N going to infinity and the synaptic 
depth going to infinity do not commute. This is the subject of a separate study. 

Appendix A. Statistical physics approach 

A.1. Unbiased pattems 

In this section we calculate the optimal information content using the replica- 
symmetric ansatz. The average of the logarithm of the partition function is done 
using the replica method; we first calculate (2")  for n integer (i.e. the partition 
function of n identical replicas of the percepuon); then we assume the possibility of 
analytic continuation for n non-integer and we obtain the average of the logarithm 
of the partition function by the relation 

(Z") - 1 (In 2) = lim 
n-0 n 

In the replica-symmetric approximation (i.e. one assumes each replica has identical 
ground states) we get 

where 
1 G = lim -- + i ( { c ~ ) ~ = ~ , ~ )  

P--m 2 1  

The order parameters {ek} ( I C  = 0,l) are the typical mean values of the fraction of 
discarded pattems and of errors 

with 

Vo( A )  = @( li - A )  - O( -1i - A )  

V1(A) = @ ( - I < -  A) .  
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The wk are their conjugate parameters, and x = p(l - q)  where q stands for the 
replica-symmetric Edwards-Anderson order parameter which characterizes the typical 
overlap between couplings in two different replicas; i( ea, E )  is the function defined 
in equation (16). The function F is given by 

In the limit p -+ 00, q goes to one but x remains finite for a storage level larger than 
a,. The integral over X is dominated by the minimum of F,  realized for some value 
X 0 ( z , { w k } , t ,  z). The optimal information content is then given by the saddle-point 
equations aG/ax ,  for every 12 aG/&,  and aG/awl .  

D1( li + t)' (71) 
K 

Dt(IC-t) '+ 1 

c = H (li + 4 G )  
ea = 1 - H ( I C  + JG) - H ( I C  - &) 
wo = 1 + h , ( l  - e , )  

w = 1112[(1 - .,)/e, 

where tp is the renormalized fraction of errors 

Er = E / (  1 - E a )  

(72) 

and where w, wa and z are given by the above saddle-point equations. In the first 
region we have E = 0, w = m and wo = 1;  thus we obtain equations (47) and (48). 

A.2. Biased parrems 

In the following we will distinguish the input bias mi and the output bias m0. This 
section deals with the case m, > 0. We now have to consider the error functions 
defined on plus and minus output patterns separately. However the preceding cal- 
cs!aticc 5 easi!y gene:&ed to this 2nd in the rep!irrr-symmetric approximation 
we have 

;opt = max G (73) 
=.(.-;,W: J ~ = o . w = ~  

where G is now 

+ - 1 J D t h  JdXexp(-/3Fr(X, t , . ) ) ) .  
P 
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me parameters €2 are now the fractions of unclassified patterns and of errors for U 
output patterns; are their conjugate parameters, and i is the information content 
defined in (12). For mi = 0 we now have (for 7 = &) 

1 
F ( X , t , x )  = W;V,(X) -t - ( A  2 x  - q 2 .  

k0.1 

For mi > 0 we have to introduce a new order parameter M which measures the 
typical magnetization of the couplings and in this case 

2 

The rest of the calculation is similar to the preceding section, but, having different 
order parameters for plus or minus outputs, we have nine saddle-point equations (ten 
for m; > 0) instead of five. These equations are for mi = 0 

and (for U = +l) 

For m, = 0 we have 
we have 

- Ii - om, M li" = 

= Ii for U = *l; when the output is biased (1 > m, > 0) 

k - O M  e= 
where A4 is a new order parameter equal to the typical bias of the couplings. The 
saddle-point equation for M reads 

In the following we consider a zero input bias; however the results are easily general- 
ized to a non-zero one by replacing li by k' in the right place in all the formulae. 
Above the critical storage level a,( li) we find a region (region I )  where all fractions 
of errors are zero except one, E;, and we have W* = IO$ = m, w; = 0 and z = m 

but X -  = is finite and we obtain equations (SO) and (51). Above ao( k') 

We Still have e* = 0, W* = 03 but now X- = 0 and Xf = 
we ob!&# equ2tin.s (54) 2nd (C<\ 

[-,.,I. 
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Appendix B. Stability of the replica-symmetric solution 

B.I. Unbiased pottems 

The replica-symmetric solution is locally stable if the matrix of fluctuations in replica 
space is positive definite. Here we shall not present the details of the calculation 
of the eigenvalues of this matrix; for more details see [6] .  For the cost function 
presented here the calculation is similar to the calculation of [lo], and the condition 
for stability reads for unbiased patterns 

Thus we obtain - 

This equation defines the Almeida-Thouless (AT) line. This line is always located in 
the region where e = 0; thus it is given by 

B.2. Biased patrems 

For biased patterns the condition for stability reads 

For zero input bias the  AT line crosses these two regions (I and 11) in the a-I< plane; 
the equation for the line reads in region I 

_ -  - f fH( - I i )  + f- 
O i ~ ~  

~t + H ( - inf(-I i - ,  I< - S-)) 

where X -  is given by (51). In region I1 it is given by 

where the value of X +  is given by (55). For pa t te rs  with positive input bias we 
always have aAT = eo. 
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Appendix C. One-step replica-symmetry breaking 

For a one-step replica-symmetry breaking ansatz [ll] the function G(p)  of section 5 
is given by 

G(P) = min (Go(qo,ql,m) + aGl(P,qo,ql ,m))  (77) 
q o l q l . m  

with 

The function Go depends only on the constraints set on the couplings. Here, as above, 
we consider only the case of continuous couplings with a spherical normalization. 
Then 

with 

A = 1 - q1 + m(ql - d.  

In the limit p + CO the minimum in equation (77) is obtained, when the storage level 
exceeds ac = 2, for q1 going to one and m to zero; otherwise G(p ) /p  goes to zero. 
In order to study this limit we introduce the new parameters 

91 - 40 c = m- 
41 - 40 1 - 41 

and 

U = /A, 
41 - 40 

(Note that the parameter x is different from the one introduced in the previous 
sections.) The limit p -, 00 now gives for the fraction of errors 

where the function 6 is given by 
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and 

1 D,w= -exp(-+(w-t ) ' )  d w .  Jz;; 
In the limit a + CO there is a solution with qa = 0, x going to zero and c to infinity 
but 

ex2 we+- Jizz& 
and we find in this limit 

i $In, a. 
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