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Abstract. We study the information storage capacity of a simple perceptron in the
error regime. For random unbiased patterns the geometrical analysis gives 3 logarithmic
dependence for the information content in the asymptotic limit. In this case, the
statistical physics approach, when used at the simplest level of replica theory, does not
give satisfactory results. However for perceptrons with finite stability, the information
content can be simply calculated with statistical physics methods in a region above the
critical storage level, for biased as well as for unbiased patterns.

1. Introduction

In the study of the performance of formal neural networks as associative memory
devices, the recent interest in highly biased patterns has stressed the need for using
information capacities, instead of pattern capacities, in order to characterizc the
performances of the network. For unbiased patterns the information capacity is
identical to the pattern capacity if the net makes no error. In the error regime, the
information content is the relevant quantity that should be considered. The aim of
this paper is to focus precisely on the information content of simple perceptrons in
the error regime, for biased and unbiased random patterns.

We will consider the simplest model of layered neural networks, the one-layer
perceptron. This network has N input neurons, with activitics denoted by the V-
dimensional binary vector &, one output neuron, with binary activity o, and couplings
coming from the input neurons (J). If some state £ is presented to the network then
the output will be

o =sgn(J-£—0). 1)

This network performs a linear separation of the input space. In supervised learning
one is asked to classify a given set of p patterns ({£#,0%},u = 1,...,p) into two
classes. The stability of the pattern p is defined by

AF =gt J - g4 VTR )

If all the stabilities are positive all the patterns are learned by the network, that is
all the patterns are correctly classified. The values of the stabilities provide a quality
test for the classification: the larger the stabilitics, the better the classification.
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A geometrical argument [1, 2] allows the derivation of the probability that a
random dichotomy of a set of patterns will be learnable. In particular, in the large
N limit the perceptron is able to learn any random classification of p = N random
patterns up to a critical storage ratio a_ = 2. Above criticality, the same argument
can be extended to derive the minimal possible number of errors for a random
dichotomy [3, 4]. For these results to be valid, the only requirement on the patterns
is that they should be in ‘general position” any subset of N patterns should be
linearly independent.

Unfortunately the geometrical approach cannot be easily generalized, in particu-
lar, if one is interested in considering biased patterns or finite stability requirements.
Within the framework of statistical physics, a completely different approach has been
proposed by E Gardner [5, 6]. The general idea is to work in the space of couplings,
and to define an ‘energy’, a cost function. One can then compute a partition func-
tion and look for the couplings which minimize this energy. If the cost function is
the number of errors, one can obtain the maximal storage capacity of a perceptron
in many specific cases (real couplings for unbiased and biased patterns [5], discrete
couplings [7, 8], etc). Above saturation one obtains the minimal possible number of
errors [6, 9], and one can also consider other cost functions [10]). In particular, cach
cost function can be associated with a particular algorithm, and the analytical calcu-
lation gives the optimal and typical properties of the couplings that will be obtained
by this particular “algorithm. Strong difficulties remain; the techmques used, namely
the ‘replica techniques’ derived from spin-glass theory [11], in many cases become
difficult to apply for large «, and, in particular, when the cost function is the number
of errors. Hence some of the results already obtained are only approximations.

In this paper, we reconsider these results and extend them, focusing on the
information capacity of the network in the error regime. In the next section we
introduce the relevant quantities. Then we illustrate these definitions in the particular
case of Hebbian learning. Next we consider the maximal information capacity as
derived from the geometrical argument. In the subsequent sections we turn to the
statistical physics approach introduced by Gardner. The resulis are discussed in the
last section.

2. Information content of a dichotomy

2.1. Classification of biased patterns

We suppose the network has to classify a set = of p binary patterns. Among these
p patterns p” patterns have output 7 (r = =*1); p, is the number of patterns with
output r that the network classifies as o. The fraction of errors in r-output patterns
is thus

T=pl /0. €)

The information stored in the network is in this case (see e.g. [12])

+4p= +
I(J,Z) = In, C+*P+ —In, C*F —n, 7= 4

-t
¥

where C;,' is the binomial coefficient

Cr o= —E‘—-———- 5

P oal(n—p)!
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The last two terms represent the loss in information content due to errors. In the
large N limit we obtain for the information stored per synapse

iW(J,2) = 1%1_1.1100—-11\.—’ = (S (f"'(l —-et) 4 f_e') — Z fTS(e")) (6)
r=t

iU Ul G

S(z)=~zln,(z) - (1 - x)Inya(t — x) (N

and f* = p7/p is the probability of output = for an arbitrary pattern. When no
errors are present the information content is

i = aS(f*) - (8)

In the case of standard coding (f* = f~ = %) the errors for plus or minus output
are equivalent and the information content per synapse reduces to

i(J,Z) = all - S(e}) (9
where ¢ is the fraction of errors.

2.2. Generalization to finite stability

We may also study the case of a neuron that only classifics patterns with a stability
larger than some parameter X (K > 0); the neuron discards the patterns with small
stability, to enhance the probability of good classification (such a perceptron is then
similar to a perceptron with three-state output). In this case pJ patterns with =
output will not be classified (0 output) and the fractions of unclassified patterns is

€ = Pg/p"- (10)

The information stored in the network is now

T=1 ! Iy =2 gy, P
= In —1ln —1ln ) o~y -
Pl +p)ed + ) pt + )t P pltedtett Tt pitpg el

(11
and in the large N limit we obtain
I ' i
1=1&TMF=Q( Z -B.In, B _- Zf"(S(eg)+(1—eg)S(er)))

T=+,0,— o=%
(12)

where we have defined the renormalized fractions of errors €/

el =€ J(1—¢) (13)
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and (v = 1)
r = ST (—eg) (1~ )+ fTTeTT (14)
By=3) fe. (15)
T
Here B ig the fractinn of natternc claccifiad 0 tha Fen AF Aisnoardad

L L T SR R L portviiw VIGBDIIIUU GO J, Uo I.D I.l.l\.t l.l.ﬂ\.rl.lUll Ul. umualucu

patterns. In the case o tandard coding the errors and the discarded patterns are
equivalent for plus or minus outputs, and one obtains

i(J,E) = a1 - e)(1 — S(e,). (16)

In the following sections we will consider the optimal information content that can
be reached with such a perceptron, first using a geometrical method in the unbiased,
K = 0 case, then using the techniques of statistical mechanics. In the next section
we start with the study of a simple case, the Hebb learning rule, in order to illustrate
the quantities introduced here.

2.3. Example: classification with Hebb learning rule

Let us consider the simple Hebb rule for unbiased patterns, as used by Hopfield [13].
For a simple perceptron the rule reads (with the normalization J? = N)

= \/LI_)ZG“.E“. (17)
n

In this case it is particularly simple to derive the information content, because the
distribution of stabilities is a Gaussian of width 1 and mean value 1/\/cx. In the large
N limit the fraction of errors is thus given by

e= H ( —1—“\ (18)
\ Ve /
where
oo
H(z) = j Dt (19)
x
and D¢ is the Gaussian measure
Dt = — ( ‘2) dt (20)
= ——eX - +
V2r P 2
The inf Qrmati n content is a monotonically increasing function of the storage level;
when o goes to infinity the information content per synapse tends toward a ﬁnlte

value (see also [12])

i,=1/mln2. 2D
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For biased patterns, we assume by convention that the probability of minus output
S~ is larger than its plus counterpart f+; we define m; as the input bias and the
output bias is

m,=2f" —1. (22)
In order to store a macroscopic number of patterns, a generalized Hebb rule must

be used. Such a rule has been proposed in [14, 15] and modified in [16]; the synaptic
vector is

Um 1 - m? 1
J = o Lr+ (o* —m )(&* — mI) - JPTI
VPm | 1 —md \/p(l—mg)(l—m?);
23)
where T is the vector I, =1 for k= 1,..., N and the last term subtracts from J

the projection of the vectors (o* — m )(§* — mI}/N (forp=1,...,p)on I

_I‘Pz ¢ ; (o —m \(iﬁu.f._m.\ 4)
¢ 29 24
M

= e & LR N2 . (
mi/p(1 = m2)(1—m?) AN Y/ )

The parameters I/ and c are to be optimized in order to give the best performance.
It can be shown [16] that the choice ¢ = n; is optimal; in this case the probability
distribution of the stabilities is still a Gaussian, but now it has width 1 — m? and its
mean value depends on the output. For a pattern with output r the mean value is
now

1 j1-m?
A= — {14+ rm (U -1 25
(B) = Z [T (L Tmo(U = 1) (25)
and the error fraction for T output is

_ 1 (14 7mm (U-1)
o)

where U is chosen to optimize the information content (for every bias and every
storage level, one has 1 < U < 2). Note that the information content is independent
of the input bias (for m,; < 1); but this is only true for K = 0. Note also that for
every bias (and every value of U) the asymptotic value of the information content
is the same; it is given by equation (21). However, as already shown in [12], for
large m (m, > 0.994) the information content is no longer a monotonic function
of the storage level: in this case it goes through a maximum ¢, before reaching its
asympiotic value. We have

lim i =1/21n2 7

Mo—

s0 it saturates Gardner’s bound.
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When the perceptron has finite stability for every output bias (m_, < 1) the
asymptotic information content is now

P exp(—K?)
*® " rln?2 2H(f()

(28)
where
= —. 29)

The value of the asymptonc information content per synapse is plotted on ﬂgure 1as
a function of K. It is interesting to note that its optimal asymptotic value is reached
for K ~ 0.6; thus, discarding the patterns with low local fields leads to a significant
improvement in the information content.

08

c.4

0.2

-0

Figure 1. Asymptotic information content per synapse as a function of the parameler
K for Hebbian learning rule (for all output bias).

3. Information capacity: geometrical argument

The geometrical argument used in the 1960s [1] provides an estimate for the maximal
capacity of a simple perceptron for patterns ‘in general position’. In particular, in
the large N limit, one gets the critical value i = o = 2 for storage without error.
The argument can be used to derive the maximal capacity in the error regime, as
shown by Venkatesh and Psaltis [3]. Their main result is that the maximal storage
ratio (number of patterns per synapse) that can be obtained with at most a fraction
Asrenen io fan lavon L% A T | DY wwhara 7 e a functinn af tha frantinn

€ UI. ClIULS by, I.U.l ldlgt: 1\', & [\J. - At) wWHCI l\ 13 4 Luliviiull vl I.llb laviiulil Uf
errors defined by the unique solutlon of

s (12}56) +5(e) =1 (30)
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where § is the binary entropy function, and they argue that K, is a monotonically
increasing and bounded function of ¢ (see theorem 3.5 of [3]). This last assertion is,
in fact, incorrect. In particular, for large o, K, diverges like \/aIn(a). As shown
by one of us [4), it turns out that the analysis, obtained from the very same argument,
is more natural and simpler when the information content rather than the number
of patterns is considered. Let us first give the result, and then the argument that
supports it.

The maximal information content in bits per synapse for « larger than two takes
the simple expression:

i=aS(l/a). (31
The fraction of errors at that value of « is given by the solution of
S(1/a)+ S(e) = 1. (32)

Note that ¢ is continuous at o = 2, increases with o and behaves like In,( o) for
large o. Now let us derive formulae (31) and (32). We start with the (well known)
derivation of the capacity for no error. The probability W of success for the storage
of p patterns is

W = A(p,N)/2°F (33)
where A(p,N) is the number of regions delimited by the p constraints, and 27 is
the total number of possible dichotomies. From geometrical counting one gets

min{p, N)

A(p,N)= > Ct (34)

k=0

where CF is the binomial coefficient, C} = p!/k!(p— k)!. For large N and p larger
than N, this number simplifies to

Alp,N)=cC} (35)
and thus
lim — In, W =a [s (—1—) - 1] . (36)
N—oo x

The critical capacity a, is the point of change of asymptotic behaviour, which is here
a, = 2. Now for a larger than 2, we consider the probability of success in storing any
subset of patterns of size v N. The number of possible successes is now multiplicd
by the combinatorial factor C7%:

ch, ol

W = —MQ‘;N“N (37)

One has the asymptotic behaviour
. 1 _ 1 RAYE

hl{l__r‘nwﬁlnzw_a[s (;)+S(a) 1] (38)

and at criticality
1 ¥ _
s(;)+s(—a-)—1_o. (39)

This is equation (32) for the fraction of errors ¢ = 1 ~ v/a. Now from (9) the
information content per synapse is

i=al1-5(2)] (40)

[0
which, combined with the preceding equation, leads to expression (31).
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4, Statistical physics approach

4.1. Optimal information content: replica-symmetric solution

We now consider the statistical physics approach as introduced by Gardner [5], and
we use the formulation proposed in [10}. In order to derive the optimal information
content of a perceptron, we consider a cost function equal to the loss of information
content due to errors or discarded patterns. This cost function E is defined on the
N-dimensional space of couplings; if ¢ is the loss of information content per synapsc
we have

E(J,Z}=N¢ (41)
with

¢=aS(ft)-iJ,=). (42}
The minimum of this cost function (i.e. the ‘ground-state energy’) is thus obtained

when the network has the optimal information content; this minimum is zero below
the critical storage level and becomes posmve above criticality, i.e. when the fraction

of errors becomes positive. To calculate this minimum we define the partition function
= =
Z{(8,2) = fd,u(J)exp(——ﬁE(J,:. ) (43)

where du(J) is a normalized measure on the space of couplings. In this section we

will only consider the case of spherical couplings, i.e.
§(J2—N)dJ

J6(I2 - N)dJ’

du(J) = (44)

Then we proceed along the lines of [6]; as usual we expect the free energy to be
self-averaging and thus the optimal information content is given with probability one

by

{In Z(8,Z)}s

i @4s)

opt + . .
i = aS(f )+,ah_.n§op.lrl_.moo

where we average over all possible sets of patterns =. This average is done using the

replica method and the calculation is presented in appendix A for unbiased (A.1) and

biased (A.2) patterns. The discussion on the stability of the replica-symmetric solution
is given in appendix B. Let us now present the particular case of finite stability.

4.2. Finite stability, unbiased patterns

Unfortunately for a perceptron with zero stability (K = 0) the replica-symmetric
solution is not valid immediately above criticality [10]. However when one adds
a finite stability requirement there is a region above criticality where the replica-
symmetric solution is still valid. This is due to the fact that the network can avoid
making errors if it discards some fraction of patterns. In this section we will study
this region for unbiased patterns.
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For a stability parameter K, and for a given storage level a, € and e, the typical
fractions of errors and of unclassified patterns, are given by the saddle-point equations
(71)-(72) (see appendix A). For every positive K two different regions are observed
when the storage level increases. In the first region, € = 0; the network increases the
number of unclassified patterns in order to avoid errors in the classification and thus
sccure a better information content. The information content is thus

i=a(l —¢) (46)
i.e. the number of classified patterns. ¢, is given by the saddle-point equation

¢ = H (Vaz - K) (47)
where ¢ is given by

4 K sinf{ — K K —/77)

1 . \ ; ey .

Z Dt(k — t)2+j Dt(K +1)*. (48)

o K—/2z —00

The Almeida-Thouless line of replica-symmetry breaking (see [11]) is always located
in this region; it is given in appendix B.1. When 2K > +/2z the equation for the
line is very simple, being given by

iap = 1. (49)

We have not found a simple physical reason for this result. The fraction of errors
is thus always equal to zero in the replica-symmetric domain. In the second region
where this quantity becomes finite the calculation is no longer valid.

The curves showing ¢ as a function of the storage capacity are presented for
various K in figure 2. The information content and its derivative are continuous
at o, and furthermore in all the replica-symmetric domains these curves increase
monotonously. Here, in contrast with the Hebbian case, the optimal information
content is obtained for K = 0 in the replica-symmetric region. In figure 3 we show
the AT line in the ee— K plane. Note that the AT line differs from the Gardner-Derrida
one, as the cost function used is different.

4.3. Biased patterns

The general formalism is easily generalized to the case of biased patterns, as shown
in appendix A.2. For a given storage level o, the saddle-point equations are now
(74)(75). In these equations a new order parameter M, equal to the typical bias of
the couplings, appears; this bias is positive for every m; > 0, and the saddle-point
equation for M is given by (76). We first consider a zero input bias; above the critical

storage level o (), we find a region (region I} where all fractions of errors are zero

except one, €;. We have
g = H(X™ - k) (50)
where X~ is given by

K
%=f+/j;(1('—t)2Dt+---f' (f Dt(K — t)?

K-X-

inf(=K, =X~}
+ f Di( K + t)2) .
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Figure 2. Optimal information content per synapse
for a perceptron with finite stability storing unbi-
ased patterns as a function of the storage level,
for different values of the stability parameter
full curves (from top to bottom), K = 0,0.5,1,2
{replica-symmetric region); dotied curves, same val-
ues of K, region where replica symmetry is broken;
chain curve, Almeida-Thouless line; broken curve,
optimal information content derived by the geomet-
rical argument (section 3) for K = 0.

T L e e B et B s S M N

Figure 3. ‘Phase diagram’ in the a~A plane; the
full curves are (from left to right} the critical curve
where the fraction of unclassified patterns ep be-
comes positive and the AT curve where replica sym-
melry is broken. The dotted curve represents the
AT curve when the cost function is the Gardner—
Derrida one.

In this case, the optimal strategy consists in discarding only patterns that have a

specific output; the network discards some of the negative-output patterns.

information content is still

i=aS(fH).

The

(51)

Therefore there is no loss in information content; indeed if a pattern is unclassified
we know its output. This strategy iS possible at a given storage level only if the

following inequalities hold

AF > ot K

(52)

which is equivalent to X~ > 0. The equation X~ = 0 defines a new critical storage
level a( /) where the loss in information content becomes positive; it is given by

oK
-0

I(lf) =Zf"f Dt(cK —t)°.

(53)

Above this storage level the network also starts discarding positive-output patterns
(region 1I), Then we still have ¢* = 0 and now

7 = H(X° — k)

(54)
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where X~ = 0 and X+ is given by

o K-X+
inf(— K, K-Xx*)
+] Di(K + t)z)
— 00

and the optimal information content is no longer a linear function of the storage
level; however it is still an increasing function.
For positive input bias, we have to introduce the new stability parameters

-K
l:f-/_ Dt(K+t)2+---f+(fK (K - t)Dt

K- M - ~
——\/11__% K -oM. (55)

The meaning of these stability parameters will be clarified in the next section. In this
case we obtain the same regions as in the m; = 0 case, however one has to replace
K by K7 in the formulac giving eJ. The value of M at a,( K) My(m,, K) is
independent of m; and we have

Ko =

My(m,, K) = My(m_,,0) - K. (56)
Thus this critical storage level oy ( K') is, for every K, equal to
ay(K) = ay(0) = a (0). (37)

The information content #y(m;, K') at a,( /) is thus independent of the stability
parameter K for m, > 0; for m; = 0 the stability parameter that optimizes ¢, is, for
any output bias m,

K = My(m,,0). (58)
Thus for any output bias and any m; > 0 we have

. - . . -
io(my, m;, K) = ig(m,, m;,0) = max (ig(my, 0, K}). (59
A geometrical interpretation of this formula is given in the next section.

For m; = 0 the AT line crosses these two regions in the o~ K’ plane; the equations
for the line are given in appendix B. For patterns with input bias the situation is a
bit different; for all output bias o ,p is independent of K and m; and furthermore

Qap = Q. (60)
As in the case of unbiased patterns we always have ¢ = 0 in the replica-symmetric
region. . '

In figure 4 we show for K =1 and m; = 0 the optimal information content as a
function of the storage level for several values of the bias (m, = 0,0.5,0.8). Note
that even for pattemns with unbiased output the information content can be increased
if we allow unclassified patterns of only a specific output. This explains why the
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G 1T T L

k] “

Figure 4. Optimal information content per synapse for a perceptron with K = 1 storing
biased patierns as a function of the storage level (here m; = 0, from the highest slope
at the origin to the lowest: mo = 0,0.5,0.8): full lines, o < aar; broken lines,
o > QAT-

results obtain in this section with m, = 0 differ from the last section, where we did
not aliow for different fractions of unclassified patterns for the two classes.

Then we show regions I and II in o-K plane for m; = 0 (figure 5(a) (m; = 0)
and 5(b) (m; = 0.5)) and m,; > 0 (figure 5(c)) for different values of the output
bias, together with the regions where replica symmetry is unstable (« > o, ().
In figure 6 we show the information content ¢, at the critical storage level o,( K') as
a function of the output bias, for different values of the stability parameter K.

To end this section, note that the algorithm proposed in [5] to find couplings
that satisfy the stability requirements A > K for all patterns and all neurons in the
network can be easily generalized to an algorithm that finds couplings with optimal
information content in region I. In this algorithm one picks a pattern (o, £} at random
and checks whether its stability is Jarger than K. If not, the couplings are modified
by the rule

J—Thot (61)

For biased patterns one now has to check whether the stability is larger than o<
and to apply the same rule.

4.4. Geometrical interpretation of the results

In this section we will concentrate on equation (59) and show that it can be under-
stood from a geometrical argument. Let J be the synaptic vector and I such that
I, =1/v/'N for all k. From the definition of M and m,; we can write

J=MI+4J* (62)

¢ = mVNI+ /1 - m}V/Ngrt (63)

where J4 and £#L for all 4 = 1,...,p are orthogonal to I and have been chosen
such that they have the same norm as J and ¢*, ie. v N. Now let us define the
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3(\1 i L e A B :!l";' L e B B bl e e il T LA
I (n) 7 {b)

AT

AT’

2 | L

Figure 5. Critical lines in the a—A" plane: broken curves, a(K'); full curves, ag(A);
dotted curves: axT(K); (@) mi =0, me = 0; (B) m; = 0, mo = 0.5; (¢) my; > 0,
lines from left to right, m, = 0,0.5,0.8.

stabilities in the orthogonal space A*L (for u=1,...,p)

AL = \/INO"HJJ‘ gL (64)

According to the relations {62) and (63) we have

1 i
A# == A (65)

Thus in the space orthogonal to I the hyperplane separating the two classes is at a
distance M = m;, M /\/1 — m? from the origin.

If for a given set of patterns there exists in the space orthogonal to I' a hypérplane
at distance M from the origin that separates the two classes, then the hyperplane
parallel to the preceding one at distance M — K from the origin defines a perceptron
with stability /& that has no loss in information content (it makes no errors and orly
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Figure 6. Optimal information content at the crit-  Figure 7. Hyperplane separating the classes for
ical storage level ag as a function of the output K = 0 (full line); hyperplane defining the percep-
bias: full curve, m; = 0, K = 0,0.5,1,1.5; tron when K is finite (broken line); and hyper-
broken curve, m; > 0, all values of the stability  planes At = K* for ¢ = % (dotted line).
parameter,

patterns of one class are unclassified). Figure 7 shows the different hyperplanes in a
two-dimensional plane.

For m; = 0 the hyperplane defined by the synaptic vector has to go through
the origin (as we have M = 0 in this case); thus if the hyperplane separating the
two classes, in the space orthogonal to I, is at distance M from the origin, then
the hyperplane parallel to this one going through the origin defines a perceptron
with stability M that has no loss in information content Thus the optimal stability
parameter K is equal to M, and relation (59) is obtained.

li___ symmetry hreaking

D RRR2228S1 ) VIRSASE

5. One-step
~r

In this section we make a first step beyond the replica-symmetric approximation but
we will see that further study is needed to obtain the exact solution. However the
asymptotic behaviour shows some similarity with the geometrical analysis.

In order to go beyond the AT line it is necessary to break the replica symmetry.
The physical interpretation of this replica-symmetry breaking is the following (sce
[11]): the space of couplings that minimize the cost function is no longer connex and
is broken into different ‘valleys’. The new order parameters characterizing the system
are: g;, the typical overlap between two vectors belonging to the same valley; g, the
typical overlap for vectors belonging to different valleys; and m, a measure of the
number of valleys; if m = 1 infinitely many valleys are present; in the case m = 0
only one valley exists and the ansatz reduces to the replica-symmetric ansatz. For
binary synapses this ansatz is supposed to give the exact solution, at least in some
region above the critical capacity [7]. Here we have only considered the simplest cost
function (i.e. the number of errors); this cost function gives us the optlmal information
content only in the unbiased, X" = 0 case. We will focus on this case in this section.
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We define, as in the last section, the partition function
2(8,%) = [ au(s)exp(-pE(7,)) (66)

where the ‘energy’ E is now the number of errors. Then the minimal fraction of
errors is given, for a given storage level o, by

1. G
€min = _E 511_{20 _% (67)
where
RPN (ln Z(,B,:_.f“:
G(d) = Jé]_].nm N siz (68)

G is calculated in appendix C using a one-step replica-symmetry breaking ansatz [11];
however numerically we do not find any solution to the saddle-point equations other
than the replica-symmetric one in the region just above the critical capacity. In the
limit o — co we find analytically a one-step replica-symmetry breaking solution with
g, — 1, g — 0 and m — 0, and we obtain

T~p oo %lnz o {69)
Hence we get the same logarithmic asymptotic dependence as the one suggested
by the geometric argument but with a factor 1 instead of one (within the replica-

symmeiric approximation one finds ¢ ~ al/%).

6. Conclusion

In this paper we have obtained, in several cases, the optimal information content of
a simple perceptron above the critical storage level. Many problems arise when one
wants to derive this quantity; on one hand the geometrical analysis used in [1, 2]
and extended in the error regime by [3] may only be used for unbiased patterns and
zero stability; on the other hand the framework of statistical physics introduced in [6]
allows for a reliable computation of the optimal information content in some region
above criticality only for perceptrons with finite stability. However this framework
may be used for biased patterns, and shows that in some cases a higher information
content can be obtained above criticality if one increases the bias, which is not true
in the error-free regime. In all cases when the optimal information content can be
calculated above criticality it is an increasing function of the storage level, with the
exception of the Hebbian rule for sparse coded patterns [12]. Furthermore one can
go beyond the assumption of replica symmetry to have a better approximation in the
region where this assumption gives unreliable results. This has been shown in the last
section and compared with the exact result for unbiased patterns and zero stability.
Several directions can be undertaken in this framework; first one may try to
use more claborate patterns of symmetry breaking [11] in order to obtain the cxact
solution in the unbiased case; another possibility is to extend the caiculation of the
last section to the cost function used in section 4. Indeed we could expect to have
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an approximation of the exact solution in more general situations above the line of
replica-symmetry breaking.

Another interesting study is the one of perceptrons with discrete couplings; for
binary synapses the one-step replica-symmetry breaking may be an exact solution at
least in some region above criticality [7]. As, in all cases studied in [8], the transition
at criticality scems to be first order, this situation may be expected to remain true
when one increases the synaptic depth; and the perceptron with continuous couplings
would be recovered in the limit where the synaptic depth goes to infinity. However the
difficulty along this line of reasoning is that the one-step replica symmetry breaking
does not yield satisfactory results in the continuous case, while it does in the binary
one; one possible explanation is that the limits N going to infinity and the synaptic
depth going to infinity do not commute. This is the subject of a separate study.

Appendix A. Statistical physics approach

A1 Unbiased patterns

In this section we calculate the optimal information content using the replica-
symmetric ansatz. The average of the logarithm of the partition function is done
using the replica method; we first calculate (Z") for n integer (i.e. the partition
function of » identical replicas of the perceptron); then we assume the possibility of
analytic continuation for n non-integer and we obtain the average of the logarithm
of the partition function by the relation
n
{In Z) = lim iZ_)__—_l
n=+{ n

In the replica-symmetric approximation (i.e. one assumes each replica has identical
ground states) we get

P = max G €[0)]
#,{ex Wrlrzo,1
where
= ﬁlﬂg‘o“"‘ + i ({e}p=o,)

foal T ekwk+ﬁ/Dtln/d/\eXp( _BF(A1,2))

k=0,1

The order parameters {¢,} (k = 0,1) are the typical mean values of the fraction of
discarded patterns and of errors

1
F = Vi(aK)
P H
with

Vo(A) = ©(K = A) — O(=k — A)
Vi(\) = O(—K — \).
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The w, are their conjugate parameters, and * = 3(1 — q) where g stands for the
replica-symmetric Edwards-Anderson order parameter which characterizes the typical
overlap between couplings in two different replicas; i(e,, €} is the function defined
in equation (16). The function F is given by

F(t,e)= Y w V(M) + —(,\ -1)2

L—n1
=_u,i

In the limit 3 — oo, g goes to one but x remains finite for a storage level larger than
a.. The integral over X is dominated by the minimum of F, realized for some value
X{z,{w,},t, z). The optimal information content is then given by the saddle-point
equations 8G/ 8z, for every k 9G/8¢, and 8G /8w,

1 K m{( -K K—w./?woﬂ:)
1o / DH(K - t) +f DK +1)* (71)
o Jx-yTies 2= wo)

:H(Ii"+m)
eu=1—H(K+m>—H(Kf\/2_w§)

wy=141ny(1 —¢.)
w = ln,[(1—¢€.) /e, (72)

where ¢, is the renormalized fraction of errors

& =c/(1-¢&)

and where w, w, and x are given by the above saddle-point equations. In the first
region we have ¢ = 0, w = oo and w, = 1; thus we obtain equations (47) and (43).

A.2. Biased patterns

In the following we will distinguish the input bias m; and the output bias m,. This
section deals with the case m, > 0. We now have to consider the error functions

defined on plus and minus output patterns separately However the precedmg cal-
culation is easily npnprnlwnd to this case and in the renhra symmetric annroxtmatlon

AR

we have

1Pt = max G (73)

z{ef,wf lu=0,1,7=%

where G is now

1 .
G= AL’“ 5 +1 ({f;}k=0,1,1'_:£ s Z fT( Z €E W

k=0,1

+ -;—/DtlnfdAexp(—ﬁFT(A,i,ﬂ?)))-
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The parameters ef k are now the fractions of unclassified patterns and of errors for o
output patterns' w{ are their conjugate parameters, and ¢ is the information content
defined in (12). For m, = 0 we now have (for r = %)

FT(M\tz)= Y kak(AH‘E;( - 1)%.
k=0,1

For m;, > 0 we have to introduce 4 hew order parameter M which measures the
typical magnctmtlon of the couplings and in this case

2
A—Tm M
FT(Aat':w) = Zw;Vk(A) + 2_:; (_i-t—L? . t) :
k

ms

1

The rest of the calculation is similar to the preceding section, but, having different
order parameters for plus or minus outputs, we have nine saddle-point equations (ten
for m; > 0) instead of five. These equations are for m; =0

K° inf( -K?, K7 - 2ug= ) .
Z = va ([ Di( K7 —t)? +f - Di(K° + t)ﬁ)

Fugs 2(we - w )
74
and (for o = £1)

{(1-¢7
= ]Il2 ( fcrlchr

e ((1-e 3(13363)30)
0

e =H (fi"’ +/2(w" — wg)x)
€=1-H (1‘(0 + /2w — wg)a:) -H (fc" - \/W) . (75)

For m; = 0 we have K7 = K for ¢ = %1; when the output is biased (1 > m; > 0)
we have

where M is a new order parameter equal to the typical bias of the couplings. The
saddle-point equation for M reads

K mf( K7 K° \/2wgr) _
0=3 f°0 f Dt(K° -—t)+f DK +t)].
. K-\ 2wz Aw—wf e

(76)
In the following we consider a zero input bias; however the results are easily general-
ized to a non-zero one by replacing K by K in the right place in all the formulae.
Above the critical storage level o, ( K') we find a region (region 1) where all fractions
of errors are zero except one, ¢, and we have w* = w} = oo, wy =0 and & = oo

but X'~ = ,/2zwq is finite and we obtain equations (50) and (51). Above og( i)
we still have e* = 0, w¥ = 0o but now X~ = 0 and X+ = ,/2zw? is finitec and

»
we obtain equations (54) and (553,
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Appendix B. Stability of the replica-symmetric solution

B.1. Unbiased pattems

The replica-symmetric solution is Jocally stable if the matrix of fluctuations in replica
space is positive definite. Here we shall not present the details of the calcylation
of the cigenvalues of this matrix; for more details see [6]. For the cost function
presented here the calculation is similar to the calculation of [10], and the condition
for stability reads for unbiased patterns

1 1 2

= 1 ———— .

o> /o (1- )
Thus we ob[a_in_ )

1 K inf{ — K, K —/Zwor )
] Dt 4 Dt.
K=/Twgz —K—~/2(w—we)z

1

This equation defines the Almeida-Thouless (aT) line. This line is always located in
the region where € = 0; thus it is given by

1 K

— = Dt+1—H(inf(—K,K—\/2_z)).

(LFY K-z

B.2. Biased patterns

For biased patterns the condition for stability reads

2> T [ v (1 ~Eog)

For zero input bias the AT line crosses these two regions (I and II) in the a—K’ plane;
the equation for the line reads in region I

1 K
= fYH(-K)+ [~ (f Dt + H (~inf(-K, 1\'~.\'-)))

XaT K-Xx-

where X~ is given by (51). In region II it is given by

1 K
Lo (/ Di+ H (—inf(-K, K - J\’*))) +JTH(K)

Car K-Xx+

where the value of Xt is given by (55). For patterns with positive input bias we
always have o, = ag.
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Appendix C. One-step replica-symmetry breaking

For a one-step replica-symmetry breaking ansatz [11] the function G(3) of section 5
is given by

G(F) = min (Gy(g0,,m) + aGy(0, 4, 01, ™)) 77

with

¢, = ljDzoln/Dzl e P 4 (1—efyp [ 2/ TF 2VU " %
m ,/l—ql

The function G, depends only on the constraints set on the couplings. Here, as above,
we consider only the case of continuous couplings with a spherical normalization.
Then

Golgor a1om) = 3 (1 —(1- rz)(ql —q) 1

?—nm In(1—-¢,) + %ln A)
with
A=1-q+m(q — )
In the limit 8 — oo the minimum in equation (77) is obtained, when the storage level

exceeds a, = 2, for g, going to one and m to zero; otherwise G(3)/3 goes to zero.
In order to study this limit we introduce the new parameters

1— —
= 26—‘71 c=mA—%
4 — 4 l-gq
and
73 qo .
91— 4

(Note that the parameter z is different from the one introduced in the previous
sections.) The limit 3 — oc now gives for the fraction of errors

€=_lminL( ¢ u2+1n(1+c)+20/Dv]n/wa¢(w))

cauercr \14c
where the function ¢ is given by
w <0 dlw) =1
O<w<e  @(w)=exp(~cw/2)

< w ¢(w) = exp (—cx?[2)
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and

1
D,w= o <P (-Hw—-1)?) dw.

In the limit « — oo there is a solution with ¢, = 0, = going to zero and c to infinity
but

ez’ ~,_ .. V8lna/a
and we find in this limit

it~ qlnza
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